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Phase-fixed double-group 3-F symbols. IV. Real 3-F 
symbols and coupling coefficients for the group 
hierarchies T* D C* and T* ~ C* 
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We present sets of real 3-F symbols which correspond to explicitly given 
irreducible matrix representations for the two double group hierarchies T* D 
C* and T * ~  C*. They fit into the formalism exposed in a previous paper 
[l] on the general theory of 3-F symbols and coupling coefficients and illustrate 
much of the discussion in a subsequent one [2] treating the particular properties 
of the double groups. 
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I. Introduction 

Continuing the series [1-3] of papers devoted to the establishment of real, 
phase-fixed ([2], Sect. 4) 3-F symbols ([1], Sect. 4) for all the double groups ([2], 
Sect. 2), in this paper we treat the tetrahedral double group T*. 

Of course, many systems with tetrahedral symmetry have, in fact, full Td symmetry 
so that one is likely to use Td (which is isomorphic to the octahedral group O) 
or its double group T* (which is defined to be O*, cf. [2], Sect. 2) in analyzing 
these systems. There are, however, some systems which have an (approximate) 
Th symmetry [4, 5], and since T* is defined to be T* x Ci ([2], Sect. 2), the group 
T* becomes relevant in such cases. Although rare, some systems also exist with 
pure T symmetry [6] or very nearly that symmetry [7]. 

* Present address: Department of Pharmaceutical Chemistry AD, Royal Danish School of Pharmacy, 
Universitetsparken 2, DK-2100 Copenhagen 0, Denmark. 
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Furthermore, the tetrahedrat double group is distinguished by being easy to 
overview (a set of 3-F symbols may be tabulated on a single page), while at the 
same time exhibiting several complicating rep-theoretical features (it is non- 
ambivalent, indeed has irreps of all three Frobenius-Schur kinds ([1], Sect. 5.2; or 
[8]) like did the groups D* with n odd [3], and it is furthermore non-multiplicity- 
free). We therefore find it justified to give it here a rather detailed treatment. 

Table 1 contains the general information on T* which we shall need here. Further 
properties may be found in [9] and [10] and in the literature referred to in ([2], 
Sect. 2). Frobenius [11] was probably the first to give the character table. 

The tetrahedral double group may be generated by elements C3" and C* corres- 
ponding to a three-fold and a two-fold rotation, respectively, around axes forming 
an angle of  Arccos (~/1-~) with each other. There are thus two natural group-  
subgroup hierarchies to which one may adapt the matrix irreps of T*, namely, 
T* ~ C* and T* ~ C*. We shall now discuss these two main cases separately 

Table 1. The tetrahedral double group T* (rep-theoretical facts and conventions) 

Irreps a (F) 

A C1 C2 T E1 E2 E3 

bA E T E' E" E'" 

cF 1 F 3 F 2 F 4 U' 

dA 1 C B T E' E" E" 

Dimension 1 1 1 3 

Frobenius-Schur classification e 1 st kind 3 rd kind 1 st kind 

Vector/spin-classification f vector 

F |  Fg'i A C 1 C 2 A~CI~ : )C2~T  

F | Fh'i - -  - -  - -  T 

Primary j-value i 0 2 2 1 

Secondary j-value i - -  - -  - -  2 

2 2 2 

2 "a kind 3 rd kind 

spin 

T T T 

A A A 

a At the top is given our present notation for the irreps. Note that the totally symmetric irrep (1 r* in 
the notation of [1]) is denoted A. 
b Notation of [4, 20, 22] (except for "A" instead of "A 1''). 
~ Additional notation of [22]. 

Notation of [19]. Still another notation is the one used in Butler's book [16]. 
See ([1], Sect. 5.2). 

fSee ([2], Sect. 2.1). 
g Means "symmetric part of F |  
h Means "antisymmetric part of F |  
i See ([1], Sect. A.1). 
J See discussion in ([2], Sect. 4). 
Note that C1, C2 and E2, E3 form pairs of mutually complex conjugate irreps. The distinctions between 
C l and C2 and between E 2 and E 3 are actually not meaningful in an abstract context; the correlations 
of notation are made on the basis of the convention that "C3" of [22] is "C3"" of the present work 
and that "C3" of [19], which uses clockwise rotations, is (CZ*) -l  of the present work 
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(possible adaptation to T* = D* = C2" will also be touched upon in Sect. 4). Some 
recent literature on tetrahedral symmetry coefficients will be commented upon 
in Sect. 5. 

Fig. 1. Placement of the coordinate system relative to the axes of the 
tetrahedral generators as used in Sect. 2 for the hierarchy T* D C*. The 
two-fold rotation about the axis denoted here C~ has euler angles (0, 
Arccos ( -  1/3), "rr) 

2. Matrix irreps and 3-F symbols for T* D C* 

Fig. 1 shows how we choose to place the coordinate system in connection with 
this hierarchy. The three-fold axis is along the Z-axis and the two-fold axis lies 
in the XZ-plane.  In this way, the above mentioned generators of  T* are 

C3 z* = ~tl/23(2~r/3, 0, 0) 

and (2.1) 

C* = ~E1/2a(0, Arccos ( -1 / 3 ) ,  ~r). 

Regarding our definitions of double groups and notation for their elements, see 
([2], Sect. 2) or [12]. 

This placement  of  the tetrahedron in the coordinate system or, rather, this way 
of placing the coordinate system relative to the axes of  the rotations generating 
the tetrahedral group, is chosen for two reasons. Firstly, it allows very simple 
expressions for basis functions generating real 3-F symbols (see below). Secondly, 
it is convenient for correlation with the octahedron as we (partly from other 
considerations) choose to place that in connection with the hierarchy O* ~ C* 
in [13]. 

Table 2 then gives our standard matrix irreps for T* = C*. Note that the matrix 
forms of E2 and E3 are mutually complex conjugate when the pairwise identical 
components  are taken in the same order; this is, of  course, trivially also true of  
C1 and C2. 

All generator irrep matrices are symmetric; this ensures that these standard irreps 
allow real 3-F symbols to be chosen ([2], Sect. 3.2). Indeed, the standard basis 
functions we suggest in Table 3 are all real linear combinations of  the [jm) 
functions and thus generate real 3-F symbols ([2], Sect. 4), as seen in Table 4. 
We have made use of  the observations in ([2], Sect. 4.5) in choosing that relative 
orientation of the coordinate system and the axes of  the tetrahedral generators 
which leads to the simplest expression for the basis functions. Remaining free 
phases have been chosen in accordance with the rules in ([2], Sect. 4). 

Z 

u 
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Table 2. Standard matrix irreps for T* D Ca* 

T. Damhus et al. 

r components a F (C  z*) I'(C2*) 

A 0 1 1 
C 1 c e - i 2 ~ / 3  1 

C 2 c e i2"rr/3 1 

00 ( ) 1 [ e  - i2~/3  0 

T 1 2 1 2 
2 2 1 -- 0 e i2~r/3 --~ ~ --~ 

; �9 r_i4 -i4 l ( e-'~/3 0=/3) m_i4 i4J 

E2 { :  [ e - o / a _ : ]  [ i4 i4 l 
L i ~  - i-,/].J 

Es {: [ei;/3 _01] r- i4- ia I 

a A n~merical component 3' means "eigenvalue e -iz'2"x/3 under C z*''. The third-kind irrep components 
may be translated to numerical ones by the rules Clc = 1; C 2 c = - 1 ;  E2a =�89 E 3 a = - � 8 9  Ezb=3;  
E3 b = _3 (cf. [2], Sect. 3.4). The two generators are defined in (2.1) in the main text. 

Table 3. Basis functions for T* ~ C* 

[0 A O) = I 0 O) 

[�89 E ,  ' - 9 - I ~  �89 

1�89 E~ �89 I~ -�89 

l 1 T 1 ) = [ l  1) 

I1 TO)= I1 0) 

l 1 T - 1 ) = I 1  -1)  

13 E2 a>= I-~ �89 

i~E3a)=  3 , -I~ - 9  
I~ E3 b)=',~l~ ~> +'f~l 3 _3) 

12 c ,  c> = +~121>-412 -2) 

]2 C2 c) = +412 2) +~32-12 -1)  

12 T 1) = 412 1> +~12 -2> 

12 T 0} = -120> 

12 T - 1 )  = -',J~12 2) +412 -1> 

Basis functions are given in the form I j F y ) = ~ , ,  s( jm,  jFy ) [ jm)  (cf. [2], Eq. (4.3.2)), where F is a 
T*-irrep and 3' a component of F. The functions generate the matrix irreps given in Table 2. 
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Table 4. 3-F symbols for T* = Ca* 

A A A 3-F 

0 0 0 +1 

C1 C1 CI 3-F 

c c c +1 

C2 C 2 

C r 

T A 

(even) 

(even) 

1 0 
0 0 

E l A 

1/2 o 

C2 3-F 

c -1  

T 3-F 

- 1 + 1 ~  
o - , / ~  

El 3-F (odd) 

-1 /2  - , /1-~ 

(even) 

(even) 

T 

1 

T 

0 

T 

1 1 
1 0 
0 0 

-1  -1  

A(TTT) 

odd 
even 

C 1 A 

c 0 

T 3-F 

-1  - x / ~  

(odd) 

T 3-r  (even) 

-1 -41_2!8 
o -42_/_9 

-1  - 4 2 / 9  

odd even 

(even) 

E2 

1 0 
0 -1  

Cz 3-F 

c -1  

(odd) 

1 
-1  

C1 T 3-F 

c 1 - 1 ~  
c 0 - 4 1 / 3  

A(TC1T) = -1  

E2 Cl E2 

a c b 

3-F 

E3 C 2 E 3 3-F 

a c b + x / l ~  

E1 C2 E2 3-F 

1/2 c a 4 1 ~  
- 1 / 2  c b 41/2  

A(E1C2E2) = +1 

E l T 

1/2 1 
1/2 -1 

-1/2 o 
-1 /2  -1 

E 2 3-F 

b + , / ~  
-,/1~_ 6 

a - 4 1 s  
b +41/6  

A(E1TE2)= +1 

(even) 

A E 3 3-F 

0 a -x/1~2 
0 b - 4 1 / 2  

E 1 3-F (even) 

1/2 - 1 - ~ 3  
-1/2 +,/1/6 
- 1 / 2  - 4 1 / 3  

(odd) 

(odd) 

E 1 T 

1/2 -1  
1/2 o 

-1 /2  1 

T E 2 3-F 

1 b 1 ~  
0 b -,/1~_.3 

-1  a +,/1/3 

A(EzTE2) = +1 

(even) 

(even) 

(odd) 

E2 

T E 3 3-F 

1 b - , /?)3 
o a + 4 1 ~  
0 b -,/1~_6 

-1  a +41/3 

(even) E2 

409 
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By the general argument given in ([2], Sect. 3.5), 3-F symbols for T* D C* satisfy 
the "selection rule" 

( r ,  F2 r 3 ) ~ O ~ y ~ + y 2 + y 3 = - O ( m o d 3 ) ,  (2.2) 
")/! 72 Y3 /3 

provided one makes the translations of the non-numerical components of the 
third-kind irreps given in Table 2. 

For some of the triples, the Derome-Sharp A matrix ([1], Sect. 5.4) for the 3-F 
symbols generated here has been given (when one-dimensional, just as a number 
A). This has allowed a slight compactification of the table of 3-F symbols, since 
for example 

so that for the evaluation of (EITE3/TIy23'3) one may use the tabulated 
(E1TEa/ylY2Y3)'s together with the conjugating matrices for E1 and T, i.e., the 
3-F symbols for the triples E~AE1 and TAT. In some cases, of course, no space 
would be saved by giving the A matrix; examples are the triples CICIC~ and 
E2CIE2. 

The triple TIT will be discussed separately in Sect. 3. 

An example of the calculation of a coupling coefficient according to the conven- 
tions in [1] will illustrate further the use of Table 4: 

(E2aE3bI~.I)=~.(E2E3T)Tr(E2AE3)sign(TA,).f~(Ea 3 E2b f )  

a 
(2.4) 

Here we used first the definition of ([1], Eq. (5.3.15)), then the fact that the 3-F 
symbols (E2E3"F/Yl Y273) are even, then an analog of ([1], Eq. (5.3.10)), then Table 
4 to find the actual value of (TAT/-  1 0 + 1) for the conjugation and finally Table 
4 again for (E2E3T/b a -1).  

3. The multiplicity triple TIT 

It may be seen from the lower part of Table 1 that j-values have been assigned 
to the irreps of T* in accordance with the procedure of ([2], Sect. 4). The interesting 
T*-irrep triple in this connection is TIT which has multiplicity 2 and which we 
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shall now comment upon. This discussion applies to the T* D C* case as well 
as to the T * ~  C* case otherwise treated below in Sect. 4. Using the primary 
basis functions for T three times gives T*-adapted 3-j symbols of the form 

1 1 1 )  
T71 Ty2 TT 3 �9 (3.1) 

These numbers form a fully antisymmetric fix-vector and hence a set of odd 

symbols (TTT/Y172Y3)o for TTT (normalization is of course unnecessary here). 
Using the secondary j-value, 2, in, say, the second position gives T*-adapted 3-j 
symbols of the form 

1 2 1 ) (3.2) 
Tyl T72 Ty3 

These 3-j symbols turn out to form a non-zero set. From ([2], Eq. (4.6.2)) we see 
that the ( l l l /T71T72Ty3) 's  and the (121/T71Ty2Ty3)'s make up mutually 
orthogonal fix-vectors for TIT.  Since TTT has multiplicity 2 and we just saw that 
there is an (at least) one-dimensional space of fully antisymmetric fix-vectors, it 
is - as already stated earlier - simple phase and we conclude from Table 1 that 
there is also a one-dimensional space of fully symmetric fix-vectors orthogonal 
to the antisymmetric ones (cf. [1], Sects�9 3.2 and A.1). In all we conclude that 
with the normalization constant N defined by 

E (1 2 1)1211'2 = , (3.3) 
N ~ T71 T72 T)/3 YI,T2,T3 

we get a set of even 3-F symbols (]'T'F/]/l]/2"Y3)e for TTT by the definition 

(T T) N(1 2 , )  
'Yl 72 3'3 e TYl Ty2 TT3 

(3.4) 

Furthermore, invoking the even character of the (T  D C*)-adapted 121 3-j sym- 
bols as well as the even character of the 3-F symbols (3.4) themselves, we see 
that each of the following definitions give the same TTT 3-F symbols: 

(TTT) ( ) = N  2 1 1 

~/1 ")/2 3/3 e Tyl Ty2 T73 

T71 T72 TT3 

N 1 1 T2y3). 
= (T71 T72 

(3.5) 

(In principle, we could of course have done without these identities, but it is 
evidently convenient that one does not have to remember on which of  the three 
positions to use the secondary j-value)�9 
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It could be argued that the even 3-F symbols for T I T  should have been defined 
by normalizing T*-adapted even 3-j symbols of the form 

( 2 2 2 )  (3.6) 
T'yl TT2 T'Y3 ' 

since then it would have been evident that the correct permutational properties 
were obtained, and there would have been no problems concerning the placement 
of the secondary j-value. However, we do want to stick to rule (10) of ([2], Sect. 
4) regarding minimum values ofj~ +j2 +Jl, and it turns out that the 222 definition 
gives 3-F symbols with opposite sign of  the above ones (a situation which obviously 
cannot be remedied by real phase changes on the T* basis functions). (Compare 
discussion of the triple VVV in the icosahedral group [14]). 

For both our sets of 3-F symbols, the Derome-Sharp A matrix for the triple T I T  
([1], Sect. 5.4) is 

A ( T T T )  = odd 

even 

odd even 

1 0 

0 -1  

(3.7) 

Not having the unit matrix here is one of  the prices we (willingly) pay in order 
to have all-real sets of 3-F symbols; cf. also discussion in Sect. 5 below. 

4. Matrix irreps and 3-1" symbols for T* D C* 

Fig. 2 shows the placement of  the coordinate system used here. The two-fold 
Z* rotation generator is C2 ; the three-fold axis lies in the XZ-plane. In this way 

we may choose as generators 

Z *  C2 = ~tl/2~(~., 0, 0) 

and (4.1) 

- C *  = ~[~/23(7~-/4, 7r/2, 1 l~r/4). 

The latter generator choice necessitates a comment. The three-fold rotation C3 
about the axis singled out on Fig. 2 has Euler angles (7~-/4, ~-/2, 37r/4) (see, e.g. 
[12]). The corresponding elements of  T* are, by the conventions of ([2], Sect. 2) 

Z 

Fig. 2. Placement of the coordinate system as used for T* ~ C2" in Sect. 4. The 
counterclockwise rotation about the axis denoted here C 3 has Euler angles (77r/4, 
~'/2, 3~'/4) 
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or [12], 

C* = ~['/2](77r/4, 7r/2, 37r/4) 

and 

- C *  = @[1/21(77r/4, ~'/2, 117r/4). 

The latter element is the one yielding the same character values of the T*-irreps 
as C z* discussed in Sect. 2 and is therefore a natural choice among the two. 
Since the double groups as defined here always contain matrices R* together 
with their negatives - R * ,  it is of course immaterial for the resulting copy of T* 
which three-fold generator we choose. 

Table 5 gives our standard C*-adapted matrix irreps for T* and Table 6 our 
choice of standard basis functions generating these irreps. Note that the irreps 
again have the "symmetric generator matrices"-property ([2], Sect. 3.2) ensuring 
the existence of real triple coefficients and that the basis functions are, indeed, 
real linear combinations of the Ijm) so that they do generate real 3-F symbols. 
The general remarks made in Sect. 2 regarding choice of coordinate system and 
fixation of basis functions apply here again. 

This time the "selection rule" on the 3-F symbols is 

( F ,  F 2 I ' 3 )  # 0 ~ y l + ' Y 2 + Y 3 ~ 0 ( m o d 2 ) ,  (4.2) 
3/1 3/2 ")/3 /3 

again provided the components of the third-kind irreps are "translated" according 
to Table 4. 

Table 5. Standard matrix irreps for T* ~ C* 

F components F(C z*) F ( -  C3") 

A 0 1 

C 1 c 1 

C 2 c 1 

{-i [o o] 
1 

0 - 

1 
e-i2~/3 
ei2~/3 

[ -�89 -�89189 -�89 1. ~-~ll 0 1. ~-~I1 �89 

[ 
- i , / ~  '+�89 J 

F e-i11~/12 
l~f~[ ei5~/6 ei5=/61 e-15"n'/12J 

__['ei11~/12 e-i5./6 l 
~/1/2[ e_iS~/6 eiS=/laj 

A numerical component 3' means "eigenvalue e -iv= under C z*''. The third-kind irrep components 
may be translated to numerical ones by the rules Clc = C2 c = 0; E2a = E3b = �89 Ezb = E3a = - I .  The 
two generators are defined in (4.1) in the main text. 
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Table 6. Basis functions for T* = C2" 

T. Damhus et al. 

l0 A 0) = l0 0) 
1 1 1 1 

I~ E1 t _ _  1 1 -~)-I~-~) 
I 1 T 1 ) = I I I )  ] 2 T 1 ) = - [ 2 - 1 )  

I1T0)=] I  0) 12 T 0 ) = 4 1 2 2 )  + 4 1 2 - 2 )  

I l T - 1 ) = l l - 1 )  1 2 T - 1 ) = - 1 2 1 )  

iI E2 a)=,/~ll, Z3 9 +'/~h - I) 

II E2 b> =~113>-413-�89 
13E3 Y33 13 1 

13 E3 b) = x/~l 3 �89 - 4 1 3  - 3) 

12 C 1 c)= --�89 2)+,/~12 0)+�89 

12 C2 c) = �89 2) +,/~12 O) -�89 -2) 

Basis functions are given in the same form as in table 3. The functions generate the matrix irreps 
given in Table 5. Note that the A, El, and 1T functions are identical to those of Table 3 (although 
the component designations now have a different meaning). 

Compactification of the table of 3-F symbols, Table 7, has again been possible 
by giving Derome-Sharp A matrices ([1], Sect. 5.4). 

As a final comment we point to the fact that the dihedral group D* [3] is an 
intermediate group between T* and C*, that is, we have T*~  D* ~ C*. It is 
therefore a natural question whether we could put the restriction on out matrix 
irreps that they be also D*-adapted. This turns out to involve some complications, 
however: 

One problem is that strict adaptation to D* would violate our fundamental 
requirement that mutually conjugate third-kind irreps should occur in matrix 
forms which are precisely complex conjugates of one another. To see this, consider 
the subduction relations 

E2(T*) o E1/2(D2* ) (4.3) 

E3(T*) + E1/2(D2*). 

If E2(T*) and E 3 ( Z * )  have matrix forms s and ~3 with ~2 = 1:3, then we have, in 
particular, 0:25 D2*)'=(IF3 ~, D2*); but this means that E1/2(D*) occurs in two 
different matrix forms (since E1/2(D*) is of the second kind and thus cannot have 
a matrix form which is equal to its complex conjugate). And the difference does 
not just amount to a permutation of the components of 1:3 $ D* (which might 
have been acceptable), because EI/2(D*) has only antisymmetric conjugation 
matrices. 

Another thing is that it has been proved [15-17] that real 3-Y symbols may not 
be chosen corresponding to (T*~  D* ~ C*)-adapted irreps. Nevertheless, we 
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Table 7. 3-F symbols for T* ~ C* 

415 

C1 

C 

C2 

C 

C1 

C 

T 

1 
1 
0 

-1 

E2 

E3 

Cl C1 3-F 

c c -1 

C 2 C 2 3-F 

c c -1 

A C2 3-F 

0 c 

C~ T 

c 1 
c - l  
c 0 
c -1 

A(TC~T) = +1 

C1 E2 

c b 

C2 E3 

c b 

(even) 

(even) 

(even) 

+1 

3-F (even) 

1/2 
4 ~Z!_2 
41/3 

-1 /2  

3-F 

3-F 

(odd) 

(odd) 

E 1 T E 2 

1/2 1 
1/2 o 
1/2 -1  

- 1 / 2  1 
-1 /2  0 
-1 /2  -1 

3-F (odd) 

- 1 / 2  
-,/~ 
-41/12 
-41~2 
-41/6 
+1/2 

A(E1TE2) = -1 

T T 

1 1 

-1 -1 

~(TTT) 

odd 
even 

E2 A 

a 0 
b 0 

El C2 

1/2 c 
- 1 / 2  c 

A(E1C2E2) = -1 

T 3-F (even) 

0 ,/~ 
0 41/6 

odd even 

1 0 

0 -1 

E s 3-F (odd) 

b -,/1/2 

E 2 3-F (odd) 

b 
a - l , f ~  

E2 T 

E2 

E 2 3-F (even) 

1 a - 1 / 2  

-1 a ,fU12 
0 b 
1 b 41/12 

-1 b +1/2 

A(E2TE2) = +1 

T E 3 3-F 

1 a - 1 ~  

0 a 41~ 
0 b - , /1 /6  

-1  b 4 ~  

(even) 

Those 3-F symbols which are generated by one or more of A, El, and 1T basis functions are identical 
to the corresponding ones in Table 4 (cf. legend to Table 6) and have been left out here (this concerns 
the triples AAA, (TTT)o , TAT, EIAE1, and E1TE1). 

have p r e p a r e d  a se t  o f  b a s i s  f u n c t i o n s  a c c o r d i n g  to  t h e  ru l e s  se t  o u t  in  ([2],  Sect .  

4) w h i c h  a re  ( T *  D D *  ~ C * ) - a d a p t e d  except f o r  t h e  a b o v e  r e s e r v a t i o n ,  i.e. w h i c h  

sa t i s fy  ~ - 2 ( T * ) =  ~:3(T*) a n d  t h u s  f e a t u r e  t w o  d i f f e r e n t  m a t r i x  f o r m s  o f  E I / 2 ( D * ) .  

T h e s e  f u n c t i o n s  g e n e r a t e  3-F  s y m b o l s  - m a n y  o f  w h i c h  a re  c e r t a i n l y  n e i t h e r  
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purely real or purely imaginary - obeying our general formalism [1]. This material 
is available from the authors upon request. 

5. Concluding remarks 

We have seen that real 3-F symbols exist for suitable choices of matrix irreps of 
T* with each of the subgroup-adaptions T* = C* and T* = C*. We have thus 
illustrated in particular the existence of  real 3-F symbols (and coupling 
coefficients) for T, the tetrahedral group, a fact which follows from a general 
theorem proved in ([18], Sect. VI), as noted there. 

[It has recently been proved [17] that the existence of real 3-F symbols (and thus 
real coupling coefficients, cf. arguments given in Appendix A of [18]) for a set 
of matrix irreps of  a finite group implies that there is a (unique) automorphism 
of the group carrying all the matrix irreps into their complex conjugates. For the 
tetrahedral group or double group, such an automorphism is necessarily outer 

because the group has irreps of the third Frobenius-Schur kind (cf. discussions 
in [8] and [18]). The automorphism is, in both the present T* cases, describable 
as the mapping 

R -~ CY*R(C2r*)  -~ 

of T* onto itself. The R*-element C2 r*-- @El/el(0, ~-, 0) is not an element of T*. 

In [13], we imbed T* in the octahedral double group O* which there contains 
C Y* and thereby have the above mapping as an inner automorphism of O*.] 
Golding and Newmarch [19] have given V coefficients (which are also 3-F 
symbols) for T* D C3". Their matrix irreps are less simple than those of Table 2 
and their E" and E" are not mutually complex conjugate. Their V coefficients 
are not all real. They achieve a slight reduction in tabulation of 3-F symbols in 
comparison with the present treatment, but on the other hand the user has to 
learn additional conventions associated with a "time-reversal operator".  A secon- 
dary basis is given for the irrep T, but there is no discussion of the use of it. 
There are some errors in their tables. 

Lulek [20] gives T*-adapted 3-j symbols (3 jFy symbols). These are not all real. 
No information is given on standard form of  matrix irreps. (Using the basis 
functions given in [20], however, we have obtained the matrix irreps. They are 
adapted to T* = C2"; E2 and E3 are not mutually complex conjugate). Butler [21, 
16] has given material equivalent to non-real sets of 3-F symbols for T*. The 
construction process used in those works is not based on matrix irreps or basis 
functions which are regarded as rather inferior aspects. This has as a consequence 
that exact information on these matters is difficult to extract from [16]. 
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